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The complex sine-Gordon equation as a symmetry flow of the
AKNS hierarchy
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60607-7059, USA
‡ Instituto de Fı́sica Teórica–UNESP, Rua Pamplona 145, 01405-900 São Paulo, Brazil

Received 13 July 2000

Abstract. It is shown how the complex sine-Gordon equation arises as a symmetry flow of the
AKNS hierarchy. The AKNS hierarchy is extended by the ‘negative’ symmetry flows forming
the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrödinger equations
appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully
analogous to the well known connection between the sine-Gordon and mKdV equations within
the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the
‘negative’ sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N)
loop algebra is indicated.

A connection between the mKdV hierarchy and the sine-Gordon equation has been a recurrent
theme in the soliton literature, see [1, 2] and references therein. As observed as early as 1980
[1], the Hamiltonians of the mKdV hierarchy remain conserved also with respect to the sine-
Gordon flow. This coincidence finds a natural explanation in the framework in which the mKdV
hierarchy is embedded in the extended hierarchy consisting of mutually commuting positive
and negative flows. The positive part of the hierarchy comprises of the mKdV hierarchy while
its negative counterpart contains the sine-Gordon equation and its own hierarchy of differential
equations. The existence of two mutually compatible families of flows for every integrable
system is a reflection of the Riemann problem connected with two complementary solutions
to the underlying linear spectral problem. One solution method uses an expansion in negative
powers of the spectral parameter λ and gives rise to the positive hierarchy while the other
method uses an expansion in the positive powers of λ and gives rise to the negative hierarchy.
In the present Letter we show how to construct the hierarchy of the negative flows and apply this
method to the AKNS hierarchy. The negative hierarchy is shown in the latter case to contain
the complex sine-Gordon equation, introduced in the context of the Lund–Regge model.

The approach we develop is a combination of the algebraic and pseudo-differential
formalisms. In its general form it explains mutual commutativity of positive and negative
flows in the framework of the constrained KP hierarchy which contains the AKNS model as a
special case with the sl(2) loop algebra and homogeneous gradation [3].

At the end of the Letter we also comment on how our approach applies to the sl(n + 1)
mKdV type of hierarchies and we obtain the Toda type of hierarchies among the negative flows.

Let Ĝ = ŝl(2) be a loop algebra with a graded structure Ĝ = ⊕n∈Z Ĝn given by a power
series expansion in the spectral parameter λ. This expansion defines an integral homogeneous
gradation with respect to the gradation operator d = λd/dλ. The algebra G = sl(2,C) has a
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standard basisEα = σ+,E−α = σ− andH = σ3. We work within an algebraic approach to the
integrable models based on the linear spectral problem L(�) = 0 with a matrix Lax operator
L = Dx + E + A. Here, E = λσ3/2 is a semi-simple element of Ĝ, chosen for simplicity to
be a grade 1 element (E ≡ E(1) ∈ Ĝ1, E(n) = λnH/2 ∈ Ĝn). The matrix A = qσ+ + rσ− is
the zero grade component of Im(ad E), see [3]. Accordingly, the matrix operator L for the
AKNS hierarchy reads

L =
(
D + λ/2 q

r D − λ/2
)

= I ·D +
λ

2
H + qEα + rE−α. (1)

Here D is the derivative with respect to x acting to the right as an operator according to
the Leibniz rule. In the corresponding formalism based on the pseudo-differential calculus,
the equivalent spectral problem L(ψ) = λψ is given in terms of the pseudo-differential Lax
operator L = D − rD−1q. The self-commuting isospectral flows (n > 0), ∂nr = Bn(r) and
∂nq = −B∗

n(q) with Bn = (Ln)+, belong to the positive part of the AKNS hierarchy. The
conjugation ∗ of Bn is defined is such a way that D = −D and (AB)∗ = B∗A∗. The second
flow of the hierarchy:

∂2r = rxx − 2q r2 ∂2q = −qxx + 2q2 r (2)

gives the familiar vector nonlinear Schrödinger equation.
To define a ‘negative part’ of the hierarchy we need a matrixM which arises as a formal

solution of the linear spectral problem

L(M) = (∂x + E + A)M = 0 (3)

given in terms of the path-ordered exponential

M = P exp

(
−
∫ x

(E + A) dy

)
(4)

where symbol P denotes a path ordering. Note, that all terms in the above exponential contain
only positive (and zero) grade generators.

The negative flows are induced by conjugation with the matrix M . To the element
X−n = Xλ−n of Ĝ−n with n > 0 we associate a flow:

δ
(−n)
X M ≡ (MX−nM−1)+M. (5)

Direct calculation shows that these flows constitute a graded Borel loop algebra [δ(−n)X , δ
(−m)
Y ] =

δ
(−n−m)
[X,Y ] . Their action on the zero grade matrix A is given by

δ
(−n)
X A = −[(MX−nM−1)− , L] = −[(MX−nM−1)−1 , E]. (6)

The flow generated byX−1 = E(−1) is of special interest and we now provide a zero-curvature
formulation for it. We choose the Gauss decomposition given by the following exponential of
terms belonging to zero grade subalgebra Ĝ0 = sl(2):

B = eχE−αeRH eψEα (7)

and define gauge potentials:

A− = BE(−1)B−1 A+ = −∂xBB−1 − E. (8)

In order to match the number of independent modes in the matrixAwe impose two ‘diagonal’
constraints Tr

(
∂xBB

−1H
) = 0 and Tr

(
B−1∂̄BH

) = 0 which effectively eliminateR in terms
of ψ and χ . In fact, those constraints reduce the zero grade subspace Ĝ0 = sl(2) into the coset
sl(2)/U(1). A more general and systematic construction for the affine non-Abelian Toda
models in terms of the coset sl(2)⊗U(1)rankG/U(1) is discussed in [4] where the models are
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constructed in terms of the two-loop WZWN models [5]. Thus, after imposing these constraints
A+ becomes equal to −∂xBB−1 −E = −A−E = ∂xMM−1 and the zero-curvature condition:[

∂̄ + A− , ∂x + A+
] = ∂̄A+ − ∂xA− +

[A− , A+
] = 0 (9)

holds for ∂̄ = δ(−1)
E as a consequence of (6).

B has been chosen so that, after imposition of the constraints, ∂xBB−1 = qEα + rE−α .
Accordingly, we obtain the following representation for q and r:

q = (∂xu)

&
eR r = (∂xū) e−R (10)

where

u = ψ eR ū = χ eR & = 1 + u ū (11)

with non-local field R being determined in terms u and ū from the ‘diagonal’ constraints

Tr
(
∂xBB

−1H
) = 0 → ∂xR = ū∂xu

&
(12)

Tr
(
B−1∂̄BH

) = 0 → ∂̄R = u∂̄ū

&
. (13)

The zero-curvature equations (9)

∂̄q = ∂̄
(
∂xu

&
eR
)

= −2ueR (14)

∂̄r = ∂̄ (∂xū e−R) = −2ū&e−R (15)

together with equations (12) and (13), take now a form of the complex sine-Gordon equations
[6, 7]:

∂x∂̄u +
u∗∂xu∂̄u
1 − u u∗ + 2u(1 − u u∗) = 0 (16)

∂x∂̄u
∗ +
u∂xu

∗∂̄u∗

1 − u u∗ + 2u∗(1 − u u∗) = 0 (17)

after substitutions of u → iu and ū → iu∗. Note that with the identification from (10)–(13),
the A+ component of the gauge potentials is shared by the AKNS and complex sine-Gordon
theories. Therefore, by gauge transformingA+ in (8) into the Ker(adE)we obtain simultaneous
Hamiltonians for both complex sine-Gordon and AKNS models.

We now sketch a pseudo-differential approach to the study of ‘negative’ flows developed
in [8]. Here we work with the AKNS Lax operator L = D− rD−1q. First, note that L can be
described as a ratio of two ordinary monic differential operators as L = L2L

−1
1 , where L1, L2

denote monic operators L1 = (D + ϕ′
1 + ϕ′

2) and L2 = (D + ϕ′
1)(D + ϕ′

2) of, respectively,
order 1 and 2. A monic differential operator L2 is fully characterized by elements of its
kernel, φ1 = exp(−ϕ2) and φ2 = exp(−ϕ2)

∫ x exp(ϕ2 − ϕ1). Its inverse, L−1
2 , is given by

L−1
2 = ∑2

α=1 φαD
−1ψα , whereψ1 = − exp(ϕ1)

∫ x exp(ϕ2 −ϕ1) andψ2 = exp(ϕ1) are kernel
elements of the conjugated operatorL∗

2 = (−D+ϕ′
2)(−D+ϕ′

1), see [9] and references therein.
In this notation, L = D + L2(exp(−ϕ1 − ϕ2))D

−1 exp(ϕ1 + ϕ2) and accordingly

q = exp(ϕ1 + ϕ2) r = (
ϕ′′

1 − ϕ′
1ϕ

′
2

)
exp(−ϕ1 − ϕ2). (18)

Similarly, the inverse of L is also given as a ratio of differential operators L−1 = L1L
−1
2 =∑2

α=1 L1(φα)D
−1ψα . The functions *(−1)

α ≡ L1(φα) and �(−1)
α ≡ ψα satisfy the same flow
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equations as r and q with respect to the positive flows of the AKNS hierarchy. We now extend
the AKNS hierarchy by the ‘negative’ flows generated by the pseudo-differential operators [8]:

M(−n)
A =

2∑
α,β=1

Aαβ

n∑
s=1

*
(−n+s−1)
β D−1�(−s)α n = 1, 2, 3, . . . (19)

where *(−n)α = L−n+1(*(−1)
α ) and �(−n)α = (L∗)−n+1(�(−1)

α ) are expressed entirely by the
phase variables ϕ1 and ϕ2 of the AKNS hierarchy. Furthermore, Aαβ is a constant 2 × 2
matrix. The corresponding ‘negative’ symmetry flows are defined by

D(−n)
A L =

[
M(−n)

A , L
]
. (20)

The following relations follow from (20) and determine flows on *(−m)α ,�(−m)α :

D(−n)
A (*(−m)α ) = M(−n)

A
(
*(−m)α

)−
2∑
β=1

Aαβ*
(−n−m)
β (21)

D(−n)
A (�(−m)α ) = −

(
M(−n)

A
)∗ (
�(−m)α

)
+

2∑
β=1

Aβα�
(−n−m)
β . (22)

These relations ensure that D(−n)
A span a graded Borel loop algebra: [D(−n)

A ,D(−m)
B ] = D(−n−m)

[ A ,B ] .

The flows D(−n)
A preserve the constrained structure of the AKNS hierarchy and act on (adjoint)

eigenfunctions q and r according to D(−n)
A (r) = M(−n)

A (r) and D(−n)
A (q) = −

(
M(−n)

A
)∗
(q),

due to identities L(*(−1)
α ) = 0 and (L∗)(�(−1)

α ) = 0. It is interesting to note at this point that the
generating functions Fα(λ) = ∑∞

n=1 λ
n−1*(−n)α and Gα(λ) = ∑∞

n=1 λ
n−1�(−n)α for *(−n)α and

�(−n)α are the solutions of the spectral problems L(Fα(λ)) = λFα(λ), L∗(Gα(λ)) = λGα(λ).
We now present two of the main results of this Letter. First, the flows D(−n)

A commute with
the isospectral flows of the AKNS hierarchy. This follows from (20) and the fact that *(−n)α ,
�(−n)α are (adjoint) eigenfunctions with respect to isospectral flows, i.e. ∂n*(−m)α = Bn(*(−n)α )

and ∂n�(−m)α = −B∗
n(�

(−m)
α ). Accordingly, the flows D(−n)

A define the symmetry of the AKNS
hierarchy. One can generalize this result to the case of the arbitrary constrained KP model
associated with the loop algebra ŝl(N) and with the Lax operator L = (L)+ +

∑M
i=1*iD

−1�i
with M < N [3]. It holds in that case that the flows of the negative Borel loop algebra will
commute with the flows of the positive Borel loop algebra, which has recently been defined
for the constrained KP hierarchy in [8], which contains several technical lemmas helpful for

completing the proofs ommitted here. The final result is that [8]
[
D(−n)

A , D(m)
B
]

= 0 where

D(m)
B are flows corresponding to the positive Borel loop algebra defined in [8] with B being

a constant M × M matrix, n,m > 0, and A is a constant N × N matrix appearing in a
straightforward generalization of (19) [8].

Secondly, the flows D(−n)
A defined in (20) for the AKNS hierarchy coincide with the flows

δ
(−m)
X defined by the matrix M for m = n > 0 and X = A = σ3. This observation provides

an indirect proof that the flows induced by the conjugation with the matrix M in (5) and (6)
are the symmetry flows of the AKNS hierarchy and in particular commute with the isospectral
flows. We will ilustrate the identity D(−n)

A = δ
(−n)
A for A = σ3 and n = 1. From equations

(21), (22) we find

D(−1)
σ3
(ϕ1) = −2

∫ x

eϕ2−ϕ1

∫ x

ϕ′
1e
ϕ1−ϕ2 D(−1)

σ3
(ϕ2) = 2

∫ x

eϕ2−ϕ1

∫ x

ϕ′
2e
ϕ1−ϕ2 (23)
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which, using expressions (18), leads to

D(−1)
σ3
(q) = − 2e2ϕ1

∫ x

eϕ2−ϕ1 (24)

D(−1)
σ3
(r) = − 2ϕ′

1 e
−ϕ1−ϕ2

(
1 + ϕ′

1e
ϕ1−ϕ2

∫ x

eϕ2−ϕ1

)
. (25)

From a comparison with equations (14), (15) we see that equality ∂̄ = D(−1)
σ3

holds provided
we identify

R = ϕ1 u = eϕ1

∫ x

eϕ2−ϕ1 ū = ϕ′
1 e

−ϕ2 . (26)

With representation (26) and transformations (24), (25) the constraints (12), (13) hold
automatically and (14), (15) are satisfied as well with ∂̄ = δ(−1)

σ3
= D(−1)

σ3
. Similarly, we

find that δ(−1)
σ± = −D(−1)

σ∓ with

D(−1)
σ+
(q) = −u2 D(−1)

σ+
(r) = −e−2ϕ1&2 (27)

D(−1)
σ− (q) = e2ϕ1 D(−1)

σ− (r) = ū2. (28)

Due to the fact that we are dealing with a Borel loop algebra all the remaining symmetry flows
can be found from the commutator relations involving known lower-grade flows.

We now comment on the special case of the generalized mKdV model associated with the
ŝl(n + 1) algebra with the principal gradation [2]. In the algebraic approach the Lax matrix
L = D + A + E contains

E = E(1) =
n∑
j=1

E(0)αj + E(1)−(α1+···+αn) A =
n∑
i=1

(
ϕ′

1 + . . . + ϕ′
i

)
αi ·H (29)

with E and A possessing grade 1 and grade 0 according to the principal gradation defined by
the charge Q = (n + 1)d +

∑n
i=1 λi ·H , where λi are fundamental weights corresponding to

the simple roots αi . The solution to the linear problem (D + A + E)(M) = 0 is given by the
path-ordered exponentials [10]:

M = exp

(
n∑
i=1

(ϕ1 + . . . + ϕi) αi ·H
)

P exp

(∫ x n∑
i=1

(
fiE

(0)
αi

+ f0E
(1)
−(α1+···+αn)

))
(30)

fj = exp

(
−

n∑
j=1

Kji (ϕ1 + . . . + ϕi)

)
f0 = exp

(
n∑
i=1

(K1i + . . . +Kni) (ϕ1 + . . . + ϕi)

)

where Kij is a Cartan matrix of sl(n + 1). Inserting X = E(0)−αj with grade −1 into (6) withM
from (30), we obtain

δ
(−1)
−αj (ϕ

′
j ) = −e−ϕj+ϕj+1 δ

(−1)
−αj (ϕ

′
j+1) = e−ϕj+ϕj+1

δ
(−1)
−αj (ϕ

′
l ) = 0 l �= j, j + 1.

(31)

while for X = E(−1)
(α1+···+αn) we obtain

δ
(−1)
(α1+···+αn)(ϕ

′
1) = e2ϕ1+ϕ2+...+ϕn

δ
(−1)
(α1+···+αn)(ϕ

′
l ) = 0 l > 1.

(32)

These results give for the element X = E(−1) = ∑n
j=1 E

(0)
−αj + E(−1)

(α1+···+αn) and ∂̄ = δ
(−1)
E the

affine Toda equation for sl(n + 1):

∂x∂̄yi = exp

(
n∑
j=1

Kijyj

)
− exp

(
n∑
j=1

K0j yj

)
yi = −

i∑
j=1

ϕj (33)
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with the extended Cartan matrix Kab. In the corresponding pseudo-differential approach
the mKdV Lax operator L = Ln+1 = (D + ϕ′

1) · · · (D + ϕ′
n+1), with the trace condition

ϕ1 + . . . + ϕn+1 = 0, is an ordinary differential operator. Let φα ∈ Ker(Ln+1), ψα ∈ Ker(L∗
n+1)

with φ1 = exp(−ϕn+1) andψn+1 = exp(ϕ1). For Aαβ = δα,n+1δβ,1 the corresponding generator
M(−1)

A = φ1D
−1ψn+1 will induce, according to relation (20),

D−1
A (ϕ

′
1) = eϕ1−ϕn+1 D−1

A (ϕ
′
n+1) = −eϕ1−ϕn+1 (34)

with D−1
A (ϕ

′
j ) = 0 for 1 < j < n + 1. We recognize in (34) the Toda structure of equation

(32). The other transformations of equations (31) follow by applying the Darboux–Bäcklund
transformations ϕi → ϕi+j , 1 � j � n (modulo n + 1).

Outlook. We have presented a concept of (non-local) Toda-like symmetries occupying the
‘negative’ sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel
sl(N) loop algebra. The case of sl(2) (both homogeneous and principal gradations) has been
described in details for AKNS and mKdV hierarchies. Details of the corresponding Toda-
like models of the sl(3) constrained KP hierarchies will be given elsewhere. It is also of
interest to establish a similar negative flow structure for the graded algebras connected with
supersymmetric integrable models in order to obtain a new point of view on the supersymmetric
Toda systems. We also plan to describe the relation of the negative Borel additional symmetry
loop algebra to the complete (centreless) Virasoro symmetry recently established for the
arbitrary constrained KP models [8]. It will also be of interest to establish a general tau-
function realization valid for both positive and negative sectors of the integrable models.

We are indebted to L Dickey for useful comments on the manuscript. HA thanks Fapesp
for financial support and IFT-Unesp for hospitality. HA is supported in part by NSF (PHY-
9820663). LAF, JFG and AHZ are supported in part by CNPq.

References

[1] Chodos A 1980 Phys. Rev. D 21 2818
Olive D and Turok N 1985 Nucl. Phys. B 257 277
Eguchi T and Yang S K 1989 Phys. Lett. B 224 373
Tracy C A and Widom H 1996 Commun. Math. Phys. 179 1
(Tracy C A and Widom H 1995 Preprint solv-int/9506006)
Ferreira L A, Miramontes J L and Guillén J S 1997 J. Math. Phys. 38 882
(Ferreira L A, Miramontes J L and Guillén J S 1996 Preprint hep-th/9606066)
Dorfmeister J, Gradl H and Szmigielski J 1998 Acta Applicandae Math. 53 1
Fioravanti D and Stanishkov M 2000 Preprint hep-th/0005158

[2] Drinfel’d V G and Sokolov V V 1985 J. Sov. Math. 30 1975
Drinfel’d V G and Sokolov V V 1981 Sov. Math. Dokl. 23 457

[3] Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1997 J. Math. Phys. 38 1559
(Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1995 Preprint hep-th/9509096)

[4] Gomes J F, Gueuvoghlanian E P, da Silveira F E M, Sotkov G M and Zimerman A H 2000 Singular conformal
and conformal affine non-Abelian Toda theories M V Saveliev Memorial Volume (Dubna, 2000) ed A N
Sassakian

Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 1999 Proc. VIth Int. Wigner Symp. (August
1999) at press

(Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 2000 Preprint hep-th/0002173)
Gomes J F, Sotkov G M and Zimerman A H 1998 Phys. Lett. B 435 49
(Gomes J F, Sotkov G M and Zimerman A H 1998 Preprint hep-th/9803122)
Gomes J F, Sotkov G M and Zimerman A H 1999 Ann. Phys., NY 274 289–362
(Gomes J F, Sotkov G M and Zimerman A H 1998 Preprint hep-th/9803234)

[5] Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1991 Phys. Lett. B 254 372



Letter to the Editor L337

[6] Lund F and Regge T 1976 Phys. Rev. D 14 1524
Pohlmeyer K 1976 Commun. Math. Phys. 46 207
Lund F 1978 Ann. Phys., NY 415 251

[7] Getmanov B S 1977 JETP Lett. 25 119
[8] Aratyn H, Gomes J F, Nissimov E and Pacheva S 2000 Appl. Anal. special issue dedicated to Bob Carroll’s 70th

birthday, at press
(Aratyn H, Gomes J F, Nissimov E and Pacheva S 2000 Preprint nlin.SI/0004040)

[9] Aratyn H 1998 Constrained KP hierarchy as a ratio of differential operators Lecture Notes in Physics 502 (Berlin:
Springer)

Aratyn H 1999 J. Geom. Phys. 30 295
(Aratyn H 1998 Preprint solv-int/9805006)

[10] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1996 Commun. Math. Phys. 177 381
(Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1994 Preprint hep-th/9412229)


