The complex sine-Gordon equation as a symmetry flow of the AKNS hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 33 L331
(http://iopscience.iop.org/0305-4470/33/35/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The complex sine-Gordon equation as a symmetry flow of the AKNS hierarchy

H Aratyn \dagger, L A Ferreira \ddagger, J F Gomes \ddagger and A H Zimerman \ddagger
\dagger Department of Physics, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL 60607-7059, USA
\# Instituto de Física Teórica-UNESP, Rua Pamplona 145, 01405-900 São Paulo, Brazil

Received 13 July 2000

Abstract

It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the 'negative' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrödinger equations appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully analogous to the well known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the 'negative' sector of the $s l(N)$ constrained KP hierarchy and giving rise to the negative Borel $s l(N)$ loop algebra is indicated.

A connection between the mKdV hierarchy and the sine-Gordon equation has been a recurrent theme in the soliton literature, see [1,2] and references therein. As observed as early as 1980 [1], the Hamiltonians of the mKdV hierarchy remain conserved also with respect to the sineGordon flow. This coincidence finds a natural explanation in the framework in which the mKdV hierarchy is embedded in the extended hierarchy consisting of mutually commuting positive and negative flows. The positive part of the hierarchy comprises of the mKdV hierarchy while its negative counterpart contains the sine-Gordon equation and its own hierarchy of differential equations. The existence of two mutually compatible families of flows for every integrable system is a reflection of the Riemann problem connected with two complementary solutions to the underlying linear spectral problem. One solution method uses an expansion in negative powers of the spectral parameter λ and gives rise to the positive hierarchy while the other method uses an expansion in the positive powers of λ and gives rise to the negative hierarchy. In the present Letter we show how to construct the hierarchy of the negative flows and apply this method to the AKNS hierarchy. The negative hierarchy is shown in the latter case to contain the complex sine-Gordon equation, introduced in the context of the Lund-Regge model.

The approach we develop is a combination of the algebraic and pseudo-differential formalisms. In its general form it explains mutual commutativity of positive and negative flows in the framework of the constrained KP hierarchy which contains the AKNS model as a special case with the $s l(2)$ loop algebra and homogeneous gradation [3].

At the end of the Letter we also comment on how our approach applies to the $\operatorname{sl}(n+1)$ mKdV type of hierarchies and we obtain the Toda type of hierarchies among the negative flows.

Let $\hat{\mathcal{G}}=\hat{s l}(2)$ be a loop algebra with a graded structure $\hat{\mathcal{G}}=\oplus_{n \in \mathbb{Z}} \hat{\mathcal{G}}_{n}$ given by a power series expansion in the spectral parameter λ. This expansion defines an integral homogeneous gradation with respect to the gradation operator $d=\lambda d / d \lambda$. The algebra $\mathcal{G}=\operatorname{sl}(2, \mathbb{C})$ has a
standard basis $E_{\alpha}=\sigma_{+}, E_{-\alpha}=\sigma_{-}$and $H=\sigma_{3}$. We work within an algebraic approach to the integrable models based on the linear spectral problem $L(\Psi)=0$ with a matrix Lax operator $L=D_{x}+E+A$. Here, $E=\lambda \sigma_{3} / 2$ is a semi-simple element of $\hat{\mathcal{G}}$, chosen for simplicity to be a grade 1 element $\left(E \equiv E^{(1)} \in \hat{\mathcal{G}}_{1}, E^{(n)}=\lambda^{n} H / 2 \in \hat{\mathcal{G}}_{n}\right)$. The matrix $A=q \sigma_{+}+r \sigma_{-}$is the zero grade component of $\operatorname{Im}(\operatorname{ad} E)$, see [3]. Accordingly, the matrix operator L for the AKNS hierarchy reads

$$
L=\left(\begin{array}{cc}
D+\lambda / 2 & q \tag{1}\\
r & D-\lambda / 2
\end{array}\right)=I \cdot D+\frac{\lambda}{2} H+q E_{\alpha}+r E_{-\alpha} .
$$

Here D is the derivative with respect to x acting to the right as an operator according to the Leibniz rule. In the corresponding formalism based on the pseudo-differential calculus, the equivalent spectral problem $\mathcal{L}(\psi)=\lambda \psi$ is given in terms of the pseudo-differential Lax operator $\mathcal{L}=D-r D^{-1} q$. The self-commuting isospectral flows $(n>0), \partial_{n} r=B_{n}(r)$ and $\partial_{n} q=-B_{n}^{*}(q)$ with $B_{n}=\left(\mathcal{L}^{n}\right)_{+}$, belong to the positive part of the AKNS hierarchy. The conjugation * of B_{n} is defined is such a way that $D=-D$ and $(A B)^{*}=B^{*} A^{*}$. The second flow of the hierarchy:

$$
\begin{equation*}
\partial_{2} r=r_{x x}-2 q r^{2} \quad \partial_{2} q=-q_{x x}+2 q^{2} r \tag{2}
\end{equation*}
$$

gives the familiar vector nonlinear Schrödinger equation.
To define a 'negative part' of the hierarchy we need a matrix M which arises as a formal solution of the linear spectral problem

$$
\begin{equation*}
L(M)=\left(\partial_{x}+E+A\right) M=0 \tag{3}
\end{equation*}
$$

given in terms of the path-ordered exponential

$$
\begin{equation*}
M=\mathcal{P} \exp \left(-\int^{x}(E+A) \mathrm{d} y\right) \tag{4}
\end{equation*}
$$

where symbol \mathcal{P} denotes a path ordering. Note, that all terms in the above exponential contain only positive (and zero) grade generators.

The negative flows are induced by conjugation with the matrix M. To the element $X_{-n}=X \lambda^{-n}$ of $\hat{\mathcal{G}}_{-n}$ with $n>0$ we associate a flow:

$$
\begin{equation*}
\delta_{X}^{(-n)} M \equiv\left(M X_{-n} M^{-1}\right)_{+} M . \tag{5}
\end{equation*}
$$

Direct calculation shows that these flows constitute a graded Borel loop algebra $\left[\delta_{X}^{(-n)}, \delta_{Y}^{(-m)}\right]=$ $\delta_{[X, Y]}^{(-n-m)}$. Their action on the zero grade matrix A is given by

$$
\begin{equation*}
\delta_{X}^{(-n)} A=-\left[\left(M X_{-n} M^{-1}\right)_{-}, L\right]=-\left[\left(M X_{-n} M^{-1}\right)_{-1}, E\right] . \tag{6}
\end{equation*}
$$

The flow generated by $X_{-1}=E^{(-1)}$ is of special interest and we now provide a zero-curvature formulation for it. We choose the Gauss decomposition given by the following exponential of terms belonging to zero grade subalgebra $\hat{\mathcal{G}}_{0}=\operatorname{sl}(2)$:

$$
\begin{equation*}
B=\mathrm{e}^{\chi E_{-\alpha}} \mathrm{e}^{R H} \mathrm{e}^{\psi E_{\alpha}} \tag{7}
\end{equation*}
$$

and define gauge potentials:

$$
\begin{equation*}
\mathcal{A}_{-}=B E^{(-1)} B^{-1} \quad \mathcal{A}_{+}=-\partial_{x} B B^{-1}-E . \tag{8}
\end{equation*}
$$

In order to match the number of independent modes in the matrix A we impose two 'diagonal' constraints $\operatorname{Tr}\left(\partial_{x} B B^{-1} H\right)=0$ and $\operatorname{Tr}\left(B^{-1} \bar{\partial} B H\right)=0$ which effectively eliminate R in terms of ψ and χ. In fact, those constraints reduce the zero grade subspace $\hat{\mathcal{G}}_{0}=\operatorname{sl}(2)$ into the coset $s l(2) / U(1)$. A more general and systematic construction for the affine non-Abelian Toda models in terms of the coset $\operatorname{sl}(2) \otimes U(1)^{\mathrm{rankG}} / U(1)$ is discussed in [4] where the models are
constructed in terms of the two-loop WZWN models [5]. Thus, after imposing these constraints \mathcal{A}_{+}becomes equal to $-\partial_{x} B B^{-1}-E=-A-E=\partial_{x} M M^{-1}$ and the zero-curvature condition:

$$
\begin{equation*}
\left[\bar{\partial}+\mathcal{A}_{-}, \partial_{x}+\mathcal{A}_{+}\right]=\bar{\partial} \mathcal{A}_{+}-\partial_{x} \mathcal{A}_{-}+\left[\mathcal{A}_{-}, \mathcal{A}_{+}\right]=0 \tag{9}
\end{equation*}
$$

holds for $\bar{\partial}=\delta_{E}^{(-1)}$ as a consequence of (6).
B has been chosen so that, after imposition of the constraints, $\partial_{x} B B^{-1}=q E_{\alpha}+r E_{-\alpha}$. Accordingly, we obtain the following representation for q and r :

$$
\begin{equation*}
q=\frac{\left(\partial_{x} u\right)}{\Delta} \mathrm{e}^{R} \quad r=\left(\partial_{x} \bar{u}\right) \mathrm{e}^{-R} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
u=\psi \mathrm{e}^{R} \quad \bar{u}=\chi \mathrm{e}^{R} \quad \Delta=1+u \bar{u} \tag{11}
\end{equation*}
$$

with non-local field R being determined in terms u and \bar{u} from the 'diagonal' constraints

$$
\begin{align*}
& \operatorname{Tr}\left(\partial_{x} B B^{-1} H\right)=0 \rightarrow \partial_{x} R=\frac{\bar{u} \partial_{x} u}{\Delta} \tag{12}\\
& \operatorname{Tr}\left(B^{-1} \bar{\partial} B H\right)=0 \rightarrow \bar{\partial} R=\frac{u \bar{\partial} \bar{u}}{\Delta} . \tag{13}
\end{align*}
$$

The zero-curvature equations (9)

$$
\begin{align*}
& \bar{\partial} q=\bar{\partial}\left(\frac{\partial_{x} u}{\Delta} \mathrm{e}^{R}\right)=-2 u \mathrm{e}^{R} \tag{14}\\
& \bar{\partial} r=\bar{\partial}\left(\partial_{x} \bar{u} \mathrm{e}^{-R}\right)=-2 \bar{u} \Delta \mathrm{e}^{-R} \tag{15}
\end{align*}
$$

together with equations (12) and (13), take now a form of the complex sine-Gordon equations [6, 7]:

$$
\begin{align*}
& \partial_{x} \bar{\partial} u+\frac{u^{*} \partial_{x} u \bar{\partial} u}{1-u u^{*}}+2 u\left(1-u u^{*}\right)=0 \tag{16}\\
& \partial_{x} \bar{\partial} u^{*}+\frac{u \partial_{x} u^{*} \bar{\partial} u^{*}}{1-u u^{*}}+2 u^{*}\left(1-u u^{*}\right)=0 \tag{17}
\end{align*}
$$

after substitutions of $u \rightarrow i u$ and $\bar{u} \rightarrow i u^{*}$. Note that with the identification from (10)-(13), the \mathcal{A}_{+}component of the gauge potentials is shared by the AKNS and complex sine-Gordon theories. Therefore, by gauge transforming \mathcal{A}_{+}in (8) into the $\operatorname{Ker}(\operatorname{ad} E)$ we obtain simultaneous Hamiltonians for both complex sine-Gordon and AKNS models.

We now sketch a pseudo-differential approach to the study of 'negative' flows developed in [8]. Here we work with the AKNS Lax operator $\mathcal{L}=D-r D^{-1} q$. First, note that \mathcal{L} can be described as a ratio of two ordinary monic differential operators as $\mathcal{L}=L_{2} L_{1}^{-1}$, where L_{1}, L_{2} denote monic operators $L_{1}=\left(D+\varphi_{1}^{\prime}+\varphi_{2}^{\prime}\right)$ and $L_{2}=\left(D+\varphi_{1}^{\prime}\right)\left(D+\varphi_{2}^{\prime}\right)$ of, respectively, order 1 and 2. A monic differential operator L_{2} is fully characterized by elements of its kernel, $\phi_{1}=\exp \left(-\varphi_{2}\right)$ and $\phi_{2}=\exp \left(-\varphi_{2}\right) \int^{x} \exp \left(\varphi_{2}-\varphi_{1}\right)$. Its inverse, L_{2}^{-1}, is given by $L_{2}^{-1}=\sum_{\alpha=1}^{2} \phi_{\alpha} D^{-1} \psi_{\alpha}$, where $\psi_{1}=-\exp \left(\varphi_{1}\right) \int^{x} \exp \left(\varphi_{2}-\varphi_{1}\right)$ and $\psi_{2}=\exp \left(\varphi_{1}\right)$ are kernel elements of the conjugated operator $L_{2}^{*}=\left(-D+\varphi_{2}^{\prime}\right)\left(-D+\varphi_{1}^{\prime}\right)$, see [9] and references therein. In this notation, $\mathcal{L}=D+L_{2}\left(\exp \left(-\varphi_{1}-\varphi_{2}\right)\right) D^{-1} \exp \left(\varphi_{1}+\varphi_{2}\right)$ and accordingly

$$
\begin{equation*}
q=\exp \left(\varphi_{1}+\varphi_{2}\right) \quad r=\left(\varphi_{1}^{\prime \prime}-\varphi_{1}^{\prime} \varphi_{2}^{\prime}\right) \exp \left(-\varphi_{1}-\varphi_{2}\right) \tag{18}
\end{equation*}
$$

Similarly, the inverse of \mathcal{L} is also given as a ratio of differential operators $\mathcal{L}^{-1}=L_{1} L_{2}^{-1}=$ $\sum_{\alpha=1}^{2} L_{1}\left(\phi_{\alpha}\right) D^{-1} \psi_{\alpha}$. The functions $\Phi_{\alpha}^{(-1)} \equiv L_{1}\left(\phi_{\alpha}\right)$ and $\Psi_{\alpha}^{(-1)} \equiv \psi_{\alpha}$ satisfy the same flow
equations as r and q with respect to the positive flows of the AKNS hierarchy. We now extend the AKNS hierarchy by the 'negative' flows generated by the pseudo-differential operators [8]:

$$
\begin{equation*}
\mathcal{M}_{\mathcal{A}}^{(-n)}=\sum_{\alpha, \beta=1}^{2} \mathcal{A}_{\alpha \beta} \sum_{s=1}^{n} \Phi_{\beta}^{(-n+s-1)} D^{-1} \Psi_{\alpha}^{(-s)} \quad n=1,2,3, \ldots \tag{19}
\end{equation*}
$$

where $\Phi_{\alpha}^{(-n)}=\mathcal{L}^{-n+1}\left(\Phi_{\alpha}^{(-1)}\right)$ and $\Psi_{\alpha}^{(-n)}=\left(\mathcal{L}^{*}\right)^{-n+1}\left(\Psi_{\alpha}^{(-1)}\right)$ are expressed entirely by the phase variables φ_{1} and φ_{2} of the AKNS hierarchy. Furthermore, $\mathcal{A}_{\alpha \beta}$ is a constant 2×2 matrix. The corresponding 'negative' symmetry flows are defined by

$$
\begin{equation*}
\mathcal{D}_{\mathcal{A}}^{(-n)} \mathcal{L}=\left[\mathcal{M}_{\mathcal{A}}^{(-n)}, \mathcal{L}\right] \tag{20}
\end{equation*}
$$

The following relations follow from (20) and determine flows on $\Phi_{\alpha}^{(-m)}, \Psi_{\alpha}^{(-m)}$:

$$
\begin{align*}
& \mathcal{D}_{\mathcal{A}}^{(-n)}\left(\Phi_{\alpha}^{(-m)}\right)=\mathcal{M}_{\mathcal{A}}^{(-n)}\left(\Phi_{\alpha}^{(-m)}\right)-\sum_{\beta=1}^{2} \mathcal{A}_{\alpha \beta} \Phi_{\beta}^{(-n-m)} \tag{21}\\
& \mathcal{D}_{\mathcal{A}}^{(-n)}\left(\Psi_{\alpha}^{(-m)}\right)=-\left(\mathcal{M}_{\mathcal{A}}^{(-n)}\right)^{*}\left(\Psi_{\alpha}^{(-m)}\right)+\sum_{\beta=1}^{2} \mathcal{A}_{\beta \alpha} \Psi_{\beta}^{(-n-m)} \tag{22}
\end{align*}
$$

These relations ensure that $\mathcal{D}_{\mathcal{A}}^{(-n)}$ span a graded Borel loop algebra: $\left[\mathcal{D}_{\mathcal{A}}^{(-n)}, \mathcal{D}_{\mathcal{B}}^{(-m)}\right]=\mathcal{D}_{[\mathcal{A}, \mathcal{B}]}^{(-n-m)}$. The flows $\mathcal{D}_{\mathcal{A}}^{(-n)}$ preserve the constrained structure of the AKNS hierarchy and act on (adjoint) eigenfunctions q and r according to $\mathcal{D}_{\mathcal{A}}^{(-n)}(r)=\mathcal{M}_{\mathcal{A}}^{(-n)}(r)$ and $\mathcal{D}_{\mathcal{A}}^{(-n)}(q)=-\left(\mathcal{M}_{\mathcal{A}}^{(-n)}\right)^{*}(q)$, due to identities $\mathcal{L}\left(\Phi_{\alpha}^{(-1)}\right)=0$ and $\left(\mathcal{L}^{*}\right)\left(\Psi_{\alpha}^{(-1)}\right)=0$. It is interesting to note at this point that the generating functions $F_{\alpha}(\lambda)=\sum_{n=1}^{\infty} \lambda^{n-1} \Phi_{\alpha}^{(-n)}$ and $G_{\alpha}(\lambda)=\sum_{n=1}^{\infty} \lambda^{n-1} \Psi_{\alpha}^{(-n)}$ for $\Phi_{\alpha}^{(-n)}$ and $\Psi_{\alpha}^{(-n)}$ are the solutions of the spectral problems $\mathcal{L}\left(F_{\alpha}(\lambda)\right)=\lambda F_{\alpha}(\lambda), \mathcal{L}^{*}\left(G_{\alpha}(\lambda)\right)=\lambda G_{\alpha}(\lambda)$.

We now present two of the main results of this Letter. First, the flows $\mathcal{D}_{\mathcal{A}}^{(-n)}$ commute with the isospectral flows of the AKNS hierarchy. This follows from (20) and the fact that $\Phi_{\alpha}^{(-n)}$, $\Psi_{\alpha}^{(-n)}$ are (adjoint) eigenfunctions with respect to isospectral flows, i.e. $\partial_{n} \Phi_{\alpha}^{(-m)}=B_{n}\left(\Phi_{\alpha}^{(-n)}\right)$ and $\partial_{n} \Psi_{\alpha}^{(-m)}=-B_{n}^{*}\left(\Psi_{\alpha}^{(-m)}\right)$. Accordingly, the flows $\mathcal{D}_{\mathcal{A}}^{(-n)}$ define the symmetry of the AKNS hierarchy. One can generalize this result to the case of the arbitrary constrained KP model associated with the loop algebra $\hat{s} l(N)$ and with the Lax operator $\mathcal{L}=(\mathcal{L})_{+}+\sum_{i=1}^{M} \Phi_{i} D^{-1} \Psi_{i}$ with $M<N$ [3]. It holds in that case that the flows of the negative Borel loop algebra will commute with the flows of the positive Borel loop algebra, which has recently been defined for the constrained KP hierarchy in [8], which contains several technical lemmas helpful for completing the proofs ommitted here. The final result is that $[8]\left[\mathcal{D}_{\mathcal{A}}^{(-n)}, \mathcal{D}_{\mathcal{B}}^{(m)}\right]=0$ where $\mathcal{D}_{\mathcal{B}}^{(m)}$ are flows corresponding to the positive Borel loop algebra defined in [8] with \mathcal{B} being a constant $M \times M$ matrix, $n, m>0$, and \mathcal{A} is a constant $N \times N$ matrix appearing in a straightforward generalization of (19) [8].

Secondly, the flows $\mathcal{D}_{\mathcal{A}}^{(-n)}$ defined in (20) for the AKNS hierarchy coincide with the flows $\delta_{X}^{(-m)}$ defined by the matrix M for $m=n>0$ and $X=\mathcal{A}=\sigma_{3}$. This observation provides an indirect proof that the flows induced by the conjugation with the matrix M in (5) and (6) are the symmetry flows of the AKNS hierarchy and in particular commute with the isospectral flows. We will ilustrate the identity $\mathcal{D}_{\mathcal{A}}^{(-n)}=\delta_{\mathcal{A}}^{(-n)}$ for $\mathcal{A}=\sigma_{3}$ and $n=1$. From equations (21), (22) we find
$\mathcal{D}_{\sigma_{3}}^{(-1)}\left(\varphi_{1}\right)=-2 \int^{x} e^{\varphi_{2}-\varphi_{1}} \int^{x} \varphi_{1}^{\prime} e^{\varphi_{1}-\varphi_{2}} \quad \mathcal{D}_{\sigma_{3}}^{(-1)}\left(\varphi_{2}\right)=2 \int^{x} e^{\varphi_{2}-\varphi_{1}} \int^{x} \varphi_{2}^{\prime} e^{\varphi_{1}-\varphi_{2}}$
which, using expressions (18), leads to

$$
\begin{align*}
& \mathcal{D}_{\sigma_{3}}^{(-1)}(q)=-2 e^{2 \varphi_{1}} \int^{x} e^{\varphi_{2}-\varphi_{1}} \tag{24}\\
& \mathcal{D}_{\sigma_{3}}^{(-1)}(r)=-2 \varphi_{1}^{\prime} e^{-\varphi_{1}-\varphi_{2}}\left(1+\varphi_{1}^{\prime} e^{\varphi_{1}-\varphi_{2}} \int^{x} e^{\varphi_{2}-\varphi_{1}}\right) \tag{25}
\end{align*}
$$

From a comparison with equations (14), (15) we see that equality $\bar{\partial}=\mathcal{D}_{\sigma_{3}}^{(-1)}$ holds provided we identify

$$
\begin{equation*}
R=\varphi_{1} \quad u=e^{\varphi_{1}} \int^{x} e^{\varphi_{2}-\varphi_{1}} \quad \bar{u}=\varphi_{1}^{\prime} e^{-\varphi_{2}} \tag{26}
\end{equation*}
$$

With representation (26) and transformations (24), (25) the constraints (12), (13) hold automatically and (14), (15) are satisfied as well with $\bar{\partial}=\delta_{\sigma_{3}}^{(-1)}=\mathcal{D}_{\sigma_{3}}^{(-1)}$. Similarly, we find that $\delta_{\sigma_{ \pm}}^{(-1)}=-\mathcal{D}_{\sigma_{\mp}}^{(-1)}$ with

$$
\begin{array}{ll}
\mathcal{D}_{\sigma_{+}}^{(-1)}(q)=-u^{2} & \mathcal{D}_{\sigma_{+}}^{(-1)}(r)=-e^{-2 \varphi_{1}} \Delta^{2} \\
\mathcal{D}_{\sigma_{-}}^{(-1)}(q)=e^{2 \varphi_{1}} & \mathcal{D}_{\sigma_{-}}^{(-1)}(r)=\bar{u}^{2} . \tag{28}
\end{array}
$$

Due to the fact that we are dealing with a Borel loop algebra all the remaining symmetry flows can be found from the commutator relations involving known lower-grade flows.

We now comment on the special case of the generalized mKdV model associated with the $\hat{s} l(n+1)$ algebra with the principal gradation [2]. In the algebraic approach the Lax matrix $L=D+A+E$ contains
$E=E^{(1)}=\sum_{j=1}^{n} E_{\alpha_{j}}^{(0)}+E_{-\left(\alpha_{1}+\cdots+\alpha_{n}\right)}^{(1)} \quad A=\sum_{i=1}^{n}\left(\varphi_{1}^{\prime}+\ldots+\varphi_{i}^{\prime}\right) \alpha_{i} \cdot H$
with E and A possessing grade 1 and grade 0 according to the principal gradation defined by the charge $Q=(n+1) d+\sum_{i=1}^{n} \lambda_{i} \cdot H$, where λ_{i} are fundamental weights corresponding to the simple roots α_{i}. The solution to the linear problem $(D+A+E)(M)=0$ is given by the path-ordered exponentials [10]:
$M=\exp \left(\sum_{i=1}^{n}\left(\varphi_{1}+\ldots+\varphi_{i}\right) \alpha_{i} \cdot H\right) \mathcal{P} \exp \left(\int^{x} \sum_{i=1}^{n}\left(f_{i} E_{\alpha_{i}}^{(0)}+f_{0} E_{-\left(\alpha_{1}+\cdots+\alpha_{n}\right)}^{(1)}\right)\right)$
$f_{j}=\exp \left(-\sum_{j=1}^{n} K_{j i}\left(\varphi_{1}+\ldots+\varphi_{i}\right)\right) \quad f_{0}=\exp \left(\sum_{i=1}^{n}\left(K_{1 i}+\ldots+K_{n i}\right)\left(\varphi_{1}+\ldots+\varphi_{i}\right)\right)$
where $K_{i j}$ is a Cartan matrix of $s l(n+1)$. Inserting $X=E_{-\alpha_{j}}^{(0)}$ with grade -1 into (6) with M from (30), we obtain

$$
\begin{array}{ll}
\delta_{-\alpha_{j}}^{(-1)}\left(\varphi_{j}^{\prime}\right)=-e^{-\varphi_{j}+\varphi_{j+1}} & \delta_{-\alpha_{j}}^{(-1)}\left(\varphi_{j+1}^{\prime}\right)=e^{-\varphi_{j}+\varphi_{j+1}} \\
\delta_{-\alpha_{j}}^{(-1)}\left(\varphi_{l}^{\prime}\right)=0 & l \neq j, j+1 . \tag{31}
\end{array}
$$

while for $X=E_{\left(\alpha_{1}+\cdots+\alpha_{n}\right)}^{(-1)}$ we obtain

$$
\begin{align*}
& \delta_{\left(\alpha_{1}+\cdots+\alpha_{n}\right)}^{(-1)}\left(\varphi_{1}^{\prime}\right)=e^{2 \varphi_{1}+\varphi_{2}+\ldots+\varphi_{n}} \\
& \delta_{\left(\alpha_{1}+\cdots+\alpha_{n}\right)}^{(-1)}\left(\varphi_{l}^{\prime}\right)=0 \quad l>1 . \tag{32}
\end{align*}
$$

These results give for the element $X=E^{(-1)}=\sum_{j=1}^{n} E_{-\alpha_{j}}^{(0)}+E_{\left(\alpha_{1}+\cdots+\alpha_{n}\right)}^{(-1)}$ and $\bar{\partial}=\delta_{E}^{(-1)}$ the affine Toda equation for $s l(n+1)$:

$$
\begin{equation*}
\partial_{x} \bar{\partial} y_{i}=\exp \left(\sum_{j=1}^{n} K_{i j} y_{j}\right)-\exp \left(\sum_{j=1}^{n} K_{0 j} y_{j}\right) \quad y_{i}=-\sum_{j=1}^{i} \varphi_{j} \tag{33}
\end{equation*}
$$

with the extended Cartan matrix $K_{a b}$. In the corresponding pseudo-differential approach the mKdV Lax operator $\mathcal{L}=L_{n+1}=\left(D+\varphi_{1}^{\prime}\right) \cdots\left(D+\varphi_{n+1}^{\prime}\right)$, with the trace condition $\varphi_{1}+\ldots+\varphi_{n+1}=0$, is an ordinary differential operator. Let $\phi_{\alpha} \in \operatorname{Ker}\left(L_{n+1}\right), \psi_{\alpha} \in \operatorname{Ker}\left(L_{n+1}^{*}\right)$ with $\phi_{1}=\exp \left(-\varphi_{n+1}\right)$ and $\psi_{n+1}=\exp \left(\varphi_{1}\right)$. For $\mathcal{A}_{\alpha \beta}=\delta_{\alpha, n+1} \delta_{\beta, 1}$ the corresponding generator $\mathcal{M}_{\mathcal{A}}^{(-1)}=\phi_{1} D^{-1} \psi_{n+1}$ will induce, according to relation (20),

$$
\begin{equation*}
\mathcal{D}_{\mathcal{A}}^{-1}\left(\varphi_{1}^{\prime}\right)=e^{\varphi_{1}-\varphi_{n+1}} \quad \mathcal{D}_{\mathcal{A}}^{-1}\left(\varphi_{n+1}^{\prime}\right)=-e^{\varphi_{1}-\varphi_{n+1}} \tag{34}
\end{equation*}
$$

with $\mathcal{D}_{\mathcal{A}}^{-1}\left(\varphi_{j}^{\prime}\right)=0$ for $1<j<n+1$. We recognize in (34) the Toda structure of equation (32). The other transformations of equations (31) follow by applying the Darboux-Bäcklund transformations $\varphi_{i} \rightarrow \varphi_{i+j}, 1 \leqslant j \leqslant n($ modulo $n+1)$.

Outlook. We have presented a concept of (non-local) Toda-like symmetries occupying the 'negative' sector of the $s l(N)$ constrained KP hierarchy and giving rise to the negative Borel $s l(N)$ loop algebra. The case of $s l(2)$ (both homogeneous and principal gradations) has been described in details for AKNS and mKdV hierarchies. Details of the corresponding Todalike models of the $\operatorname{sl}(3)$ constrained KP hierarchies will be given elsewhere. It is also of interest to establish a similar negative flow structure for the graded algebras connected with supersymmetric integrable models in order to obtain a new point of view on the supersymmetric Toda systems. We also plan to describe the relation of the negative Borel additional symmetry loop algebra to the complete (centreless) Virasoro symmetry recently established for the arbitrary constrained KP models [8]. It will also be of interest to establish a general taufunction realization valid for both positive and negative sectors of the integrable models.

We are indebted to L Dickey for useful comments on the manuscript. HA thanks Fapesp for financial support and IFT-Unesp for hospitality. HA is supported in part by NSF (PHY9820663). LAF, JFG and AHZ are supported in part by CNPq.

References

[1] Chodos A 1980 Phys. Rev. D 212818
Olive D and Turok N 1985 Nucl. Phys. B 257277
Eguchi T and Yang S K 1989 Phys. Lett. B 224373
Tracy C A and Widom H 1996 Commun. Math. Phys. 1791
(Tracy C A and Widom H 1995 Preprint solv-int/9506006)
Ferreira L A, Miramontes J L and Guillén J S 1997 J. Math. Phys. 38882
(Ferreira L A, Miramontes J L and Guillén J S 1996 Preprint hep-th/9606066)
Dorfmeister J, Gradl H and Szmigielski J 1998 Acta Applicandae Math. 531
Fioravanti D and Stanishkov M 2000 Preprint hep-th/0005158
[2] Drinfel'd V G and Sokolov V V 1985 J. Sov. Math. 301975
Drinfel'd V G and Sokolov V V 1981 Sov. Math. Dokl. 23457
[3] Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1997 J. Math. Phys. 381559 (Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1995 Preprint hep-th/9509096)
[4] Gomes J F, Gueuvoghlanian E P, da Silveira F E M, Sotkov G M and Zimerman A H 2000 Singular conformal and conformal affine non-Abelian Toda theories M V Saveliev Memorial Volume (Dubna, 2000) ed A N Sassakian
Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 1999 Proc. VIth Int. Wigner Symp. (August 1999) at press
(Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 2000 Preprint hep-th/0002173)
Gomes J F, Sotkov G M and Zimerman A H 1998 Phys. Lett. B 43549
(Gomes J F, Sotkov G M and Zimerman A H 1998 Preprint hep-th/9803122)
Gomes J F, Sotkov G M and Zimerman A H 1999 Ann. Phys., NY 274 289-362
(Gomes J F, Sotkov G M and Zimerman A H 1998 Preprint hep-th/9803234)
[5] Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1991 Phys. Lett. B 254372
[6] Lund F and Regge T 1976 Phys. Rev. D 141524 Pohlmeyer K 1976 Commun. Math. Phys. 46207 Lund F 1978 Ann. Phys., NY 415251
[7] Getmanov B S 1977 JETP Lett. 25119
[8] Aratyn H, Gomes J F, Nissimov E and Pacheva S 2000 Appl. Anal. special issue dedicated to Bob Carroll's 70th birthday, at press
(Aratyn H, Gomes J F, Nissimov E and Pacheva S 2000 Preprint nlin.SI/0004040)
[9] Aratyn H 1998 Constrained KP hierarchy as a ratio of differential operators Lecture Notes in Physics 502 (Berlin: Springer)
Aratyn H 1999 J. Geom. Phys. 30295
(Aratyn H 1998 Preprint solv-int/9805006)
[10] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1996 Commun. Math. Phys. 177381 (Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1994 Preprint hep-th/9412229)

